5^2n-1/125=5^4

Simple and best practice solution for 5^2n-1/125=5^4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2n-1/125=5^4 equation:



5^2n-1/125=5^4
We move all terms to the left:
5^2n-1/125-(5^4)=0
We add all the numbers together, and all the variables
5^2n-625-1/125=0
We multiply all the terms by the denominator
5^2n*125-1-625*125=0
We add all the numbers together, and all the variables
5^2n*125-78126=0
Wy multiply elements
625n^2-78126=0
a = 625; b = 0; c = -78126;
Δ = b2-4ac
Δ = 02-4·625·(-78126)
Δ = 195315000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{195315000}=\sqrt{2500*78126}=\sqrt{2500}*\sqrt{78126}=50\sqrt{78126}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{78126}}{2*625}=\frac{0-50\sqrt{78126}}{1250} =-\frac{50\sqrt{78126}}{1250} =-\frac{\sqrt{78126}}{25} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{78126}}{2*625}=\frac{0+50\sqrt{78126}}{1250} =\frac{50\sqrt{78126}}{1250} =\frac{\sqrt{78126}}{25} $

See similar equations:

| 10^x=10000000000 | | 4(2x-4)-3(2x=3) | | -21+9+3=18x-7x | | 5+15t-2=9t+55-7t | | 3-(x+4)=3(6-7x) | | x/2-5=x/3+1/2 | | 5x+5=3x+13x | | 3x(4x-4)=0 | | 7x+21=18x-9-3 | | 7x21=18x-9-3 | | 4x-20=8x+4 | | X-0.5x=200000 | | (5-r)(r-1)=0 | | 5*(5-4x)^2=1125 | | 28-11x=10+7x | | 5(5-4x)^2=1125 | | 3-5=2x+10x | | 3-5=2x+10 | | x^2-6x-9=0/ | | x^26x-9=0 | | 13(3x-7)÷3=78/9 | | 3+5=2x+10x | | 9=w+49/9 | | 6g+12=6g+20 | | 6x-3=17-12x | | (t+7)(t-7)=0 | | 3p-46=p | | 0.5x^2+6x-70=0 | | ((5x-2)/3)-((4x-3)/5)=6 | | 3z/7-8=3 | | (5x-2)/3-(4x-3)/5=6 | | 3-10x+5=2x |

Equations solver categories